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A numerical implementation of the method of matched asymptotic expansions is 
proposed to analyse two-dimensional uniform streaming flow at low Reynolds number 
past a straight cylinder (or cylinders) of arbitrary cross-sectional shape. General 
solutions for both the Stokes and Oseen equations in two dimensions are expressed 
in terms of a boundary distribution of fundamental single- and double-layer 
singularities. These general solutions are then converted to integral equations for the 
unknown distributions of singularity strengths by application of boundary conditions 
at the cylinder surface, and matching conditions between the Stokes and Oseen 
solutions. By solving these integral equations, using collocation methods familiar 
from three-dimensional application of ‘boundary integral ’ methods for solutions of 
Stokes equation, we generate a uniformly valid approximation to the solution for the 
whole domain. 

We demonstrate the method by considering, as numerical examples, uniform flow 
pa& an elliptic cylinder, uniform flow past a cylinder of rectangular cross-section, 
and uniform flow past two parallel cylinders which may be either equal in radius, 
or of different sizes. 

1. Introduction 
For creeping flows, the Stokes’ equation can be solved exactly using expansions 

of harmonic functions (Lamb 1932). However, if the boundary does not consist of 
simple geometric shapes, the exact solution in harmonic functions becomes extremely 
difficult (or impossible) to implement. Even such relatively simple geometries as two 
spheres or two circular cylinders (cf. Jeffery 1912; O’Neill 1964; Umemura 1982) are 
not easy to treat using eigenfunction expansions. There is, however, an alternative 
approach for the solution of such problems, based upon the use of boundary 
distributions (or in some cases ‘ internal ’ distributions) of fundamental singularities 
(cf. Oseen 1927; Finn 1959; Chang & Finn 1961; Ladyzhenskaya 1963). When the 
boundary shapes are simple enough, this method can be implemented analytically. 
In  more general circumstances, numerical analysis is required to determine the 
specific distribution of singularities that is necessary to satisfy boundary conditions, 
but in this so-called ‘boundary integral ’ mode the method can be used, in principle, 
for boundaries of arbitrary shape. 

Indeed, in the case of flows in three-dimensional or axisymmetrical domains, the 
‘boundary integral’ method has already been used to solve a number of difficult, 
creeping-flow problems using the general integral form of the solution to Stokes 
equations. In  Ladyzhenskaya’s ( 1963) formulation, the velocity field for an arbitrary 
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three-dimensional creeping motion can be determined completely by evaluating the 
distribution of so-called single- and double-layer singularities over the boundaries of 
the flow domain. One advantage of this particular formulation is that the intensities 
of the single- and double-layer potentials correspond directly to the velocity and stress 
components a t  the boundaries, and thus hydrodynamic forces or torques are 
evaluated easily once the single- and double-layer intensities have been determined. 
Ladyzhenskaya’s general solution has been applied to a large variety of interesting 
creeping-flow problems: for example the slow viscous flow of an unbounded fluid past 
a single solid body by Youngren & Acrivos (1975), the motion of a sphere in the 
presence of a deformable interface by Lee & Leal (1982), and the deformation of a 
liquid drop in shear flows by Rallison (1981). 

For two-dimensional flows, on the other hand, it is well known that the solution 
of Stokes’ equation cannot simultaneously satisfy the no-slip conditions at a body 
surface and still yield a bounded uniform velocity field at infinity. In  other words, 
Stokes’ equation does not provide a uniformly valid first approximation for the 
velocity field in the whole domain as is true for three-dimensional problems. Owing 
to Stokes’ paradox, an effective ‘boundary-integral’ method has not yet been 
developed for two-dimensional flows in an unbounded domain. Of course, an effective 
remedy to Stokes’ paradox has been known for many years in the context of 
analytical studies using the method of singular perturbation (or matched asymptotic) 
expansions. This method resolves the problem with boundary conditions a t  infinity 
by using the Oseen approximation for the outer field, thus restricting Stokes’ 
approximation to an inner field within a distance O(lbody) from the body surface (cf. 
Proudman & Pearson 1957 ; Kaplun 1957). Using this method, analytic solutions have 
been obtained for many two-dimensional flows past bodies of relatively simple 
geometry where the body surface is coincident with a coordinate surface. For 
example, solutions have been obtained for both streaming (uniform) flow and simple 
shear flow past a circular cylinder (Robertson & Acrivos 1970), and, more recently, 
for streaming flow past two equal circular cylinders using bipolar cylindrical 
coordinates (Umemura 1982). 

In the present paper, we show how a numerical implementation of the method of 
matched asymptotic expansions can be used to consider uniform streaming flow at 
low Reynolds number past straight cylinders of arbitrary cross-sectional geometry. 
General solutions of Stokes’ and Oseen’s equations for two-dimensional flows are first 
obtained in terms of distributions of single- and double-layer singularities at the 
boundaries. Then, by using the asymptotic matching principle between Stokes’ 
solution for the inner field and Oseen’s solution for the outer field, we obtain a 
uniformly valid solution for the whole domain. The method allows all the flow field 
to be determined completely at each level of approximation in both the inner and 
outer domains by evaluating distributions of singularities over the cylinder surface. 
The no-slip boundary condition is included easily in solving for the strengths of 
singularities at the boundaries. Furthermore, by systematic procedure, we can 
calculate not only the leading-order solutions, but also higher-order solutions for 
low-Reynolds-number flows. 

Even though two-dimensional flow problems can be solved using a stream-function 
formulation, we use the velocity components and pressure as the primary variables. 
This ‘direct velocity method’ yields a larger matrix to invert in calculating the 
boundary distributions for the single- and double-layer potentials. However, in order 
to evaluate stresses, a solution in terms of the stream function would require more 
numerical differentiation which may be expected to cost a great deal in terms of 
accuracy. 
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2. Formulation 
We consider then a uniform flow past a cylinder(s) of arbitrary shape in the limit 

of arbitrarily small Reynolds numbers. Without losing generality, we msume that 
the uniform velocity at infinity is in the xl-coordinate direction. 

u '=  Uwel atx+oo.  (1) 

0 = -Vp+V2u-Re(u.Vu) (2) 

The steady Naviel-Stokes equation in dimensionless form is 

and the equation of continuity is 
0 = V.U. (3) 

Equations (2) and (3) are non-dimensionalized with respect to characteristic variables 
u, = U,, 1, = a (characteristic cylinder radius), and p ,  = pU,/a. The Reynolds 
number is defined as 

R e = - .  urn a 
V 

In  the inner region, since the inertia term is small (i.e. Re -4 l),  we can assume an 
expansion of the form 

(u, P )  = fo(R4 (u, P)O+f'(Re) (u, PI' + * * * 5 (4) 

0 = -vpo+v2uo, ( 5 )  

0 = V'UO, (6)  

where the leading-order term satisfies Stokes' equation, 

and the governing equation for the next term (u, p ) l  is expressed readily as 

. -  

0 = v - u ' .  

Equation ( 7 )  for (u,p)' is simply Stokes' equation with an inhomogeneous term 
Re( f,"/f,) uo-Vuo. 

In the outer region, 1 x I 2 O(Re-'), the expansion (4) is not valid, as is well known, 
because the inertia term in (2) becomes as important as the viscous term. In  this region 
we choose characteristic variables tc = a/Re, $, = pU,/.fc = Repc, and 4, = U,, and 
the governing equations become 

0 = f?$+V2iI--iPf?iI, (9) 

0 =6*i2. (10) 

Here, the gradient operator is defined in terms of spatial variables scaled with respect 
to t, i.e. 6 = a/M. We seek a solution for (a, $) in the form of an asymptotic expansion 

(&$) = f O ( W  (4 $I0 +.?',(Re) (4 $1' + * * * 9 (11) 

where 

The obvious choice for the first term in (11) is the uniform flow, i.e. 

f @ e )  = 1, 

(0, $I0 = P I ,  0). 
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Substituting the expansion (11)  into (9) and (lo), using (12) and (13), we obtain 
Oseen's equation for the second-order approximation, 

Although Stokes' equation is a valid approximation only for the inner field whereas 
Oseen's equation applies for the outer field, the familiar asymptotic matching 
procedure yields a uniform approximation which is valid for the whole domain. 

In the following sections, we will first discuss general solutions of Stokes' and 
Oseen's equations in the boundary-integral form for two-dimensional flows. Then, we 
show how to apply these solutions in a numerical implementation of the method of 
matched asymptotic expansions to obtain solutions for streaming flow past cylindrical 
bodies of arbitrary cross-sectional geometry. 

3. A general solution of Stokes' equation in two dimensions 
We have seen that the leading-order approximation to the velocity and pressure 

in the inner domain satisfies the Stokes' equation which completely neglects the 
inertia term 

0 = -Vp+VZu, (16) 

0 = V ' U .  (17) 

For three-dimensional flow, a fundamental solution corresponding to a point force 
in (16) can be derived easily using Fourier transforms (cf. Ladyzhenskaya 1963). 

The corresponding fundamental solution of Stokes' equation for a two-dimensional 
flow can be derived in a similar manner, and we shall not dwell on the details here. 
If we consider a point force in the ek-direction applied at x = y ,  i.e. -S(x-y)  ek, then 
the fundamental solution in two dimensions is 

Here, vf" is the ith component of velocity due to a point force in the ek direction, while 
qk is the corresponding pressure. It may be noted that vf has a logarithmic singularity 
at infinity. If the fundamental solutions, (18) and (19), are used to calculate the 
stresses in the fluid, we obtain 

Again, to be sure that the nomenclature is firmly in mind, we note that T$ is the 
ij component of the stress due to the motion induced by a point force a t  x = y that 
is applied in the ek-direction. 

Now, using Green's theorem, we can obtain a general solution of Stokes' equation 
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for two-dimensional flows in terms of hydrodynamic potentials which derive from 
distributions of singularities at the boundaries, 

Here, r represents the boundaries of the flow domain and r is defined as I x -q  I. The 
unit normal n is an outer normal to the flow domain at f. 

These general solutions of Stokes' equation, (21) and (22) ,  are expressed in terms 
similar to Fredholm integrals of the second kind. The first integral in (21)  and (22) 
is denoted as the single-layer contribution, whereas the second integral is known as 
the double-layer contribution. 

For three-dimensional flow, Ladyzhenskaya ( 1  965) noted that the single-layer 
potential was continuous across a flow boundary, while the double-layer potential 
experienced a discontinuous jump at the boundary. If we define W(x)  as 

for two-dimensional flow, the jump condition for the double-layer potential is given 
bY 

W*(C, = +a) + K ( C ) ,  (24) 

Here W&) = lim W(x)  for x E SZ 
x - 4  

and W&) is W(C) evaluated at x = [ E f .  
We note that the intensities of the single and double layers are, respectively, the 

stress and velocity components at the boundary. Equation (21) is of lower order in 
spatial dimension than the full creeping-motion equation. If we apply (21)  at the 
boundaries where some components of u and/or T can be specified from the boundary 
conditions, the unknown components of u and T at the same boundaries can then 
be calculated directly by solving the resulting integral equations. These boundary 
values of u and Tare frequently the desired information; for example, we may wish 
to evaluate the hydrodynamic drag and torque on a body. Once we obtain the 
strengths of the singularities at the boundaries, the velocity or pressure distributions 
in the interior of the domain can be calculated easily from the integral expressions 
(21)  and (22) .  

For three-dimensional flows, the corresponding integral solution due to Lady- 
zhenskaya has been used successfully to solve a variety of creeping-flow problems 
(cf. Youngren & Acrivos 1975; Rallison 1981 ; Lee & Leal 1982). Nevertheless, so far as 
we are aware, there has been no similar application of (21) and (22) owing to the fact 
that the Stokes' approximation is not valid for the flow field far away from the body 
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in an unbounded fluid. It is evident from (21) that the general solution of Stokes’ 
equation for two-dimensional flows involves a logarithmic singularity at  infinity. For 
a bounded flow field, of course, a solution can be obtained from (21 1, without reference 
to a singular perturbation. However, owing to the logarithmic term, the linear matrix 
into which a collocation method transforms (21) will not be diagonally dominant as 
for three-dimensional flows. Hence, the Stokes’ solution for two-dimensional flow will 
require careful numerical evaluation to minimize numerical error. 

4. A general solution of Oseen’s equation for two-dimensional flow 
The inertial term becomes as important as the viscous term in the equation of 

motion in the flow field far away from a body, i.e. 1x1 2 O(Re-’). Oseen (1927) 
proposed the so-called Oseen’s equation to approximate the leading-order inertial 
term for low-Reynolds-number flows, 

aa 
0 = -V@+V2ii-- a$, 
0 = v-4 ,  

and we have seen that this equation governs the leading-order departure from the 
free-stream velocity in the outer region of a matched asymptotic expansion scheme. 
Although the Oseen’s equation is a correct approximation only for the flow field far 
from a body, Proudman & Pearson (1957) showed that the drag calculated on the 
basis of Oseen’s equation with no-slip boundary conditions applied at the body surface 
still yields a correct higher-order approximation for the force on a solid sphere in a 
uniform flow. Yano & Kieda (1980) numerically solved Oseen’sequation by distributing 
Oseenlet singularities inside a two-dimensional body and approximately applying the 
no-slip boundary conditions at the solid surface using a least-squares regression. The 
derivation in this section can certainly be adopted to evaluate a flow field generated 
solely on the basis of Oseen’s equation. However, in the present paper, we are 
concerned with the solution of Oseen’s equation in the context of a singular 
perturbation (matched asymptotic expansion) scheme in which Oseen’s equation 
applies in the outer region and is matched with the corresponding Stokes’ solution 
for P = rRe = O(1). 

A fundamental solution of Oseen’s equation for two-dimensional flow can be 
derived formally by including a point force -ek&(3-9), on the right-hand side of 
(26) and then using Fourier transforms. The result is 

where p = 12-91. K ,  and Kl are modified Bessel functions of the second kind, of 
order 0 and 1, respectively. The adjoint of (26) and (27) including a point force can 
be written as 

0 = v*a*. (31) 
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The solution of these adjoint equations (30) and (31) can be derived similarly: 

at* = -L e-:(ei-gi) K (1 8k  4% 0 8 )  I 

In addition, the stress from the adjoint system becomes 

P$(fik*) = p*q+ 
Then. 

and 

Here, (2, = 
equation can now be derived, 

-&. Using Green's theorem and (32)-(36)' a general solution of Oseen's 

Here, is the boundary of flow domain in the outer variables. By substituting (32), 
(35) and (36) into (37), we can readily solve for fi or p(&) on f: From (29) and (33), 
a general expression for the pressure can be derived as 

fora* = @l*, jj2*). (38) 

The first and second terms on the right-hand side of (37) correspond, respectively, 
to the single-layer and double-layer terms of Stokes' solution in (21). It can also be 
proved that the single-layer contribution to Oseen's solution is continuous across the 
boundary, while the double-layer contribution has a discontinuous jump. Since a 
uniform velocity fieldii = cis a solution of (37), the jump condition for the double-layer 
term is clearly identical to (24) and (25). 

If we were interested in solving Oseen's equation with no-slip boundary conditions 
applied on a cylindrical boundary (0, as in Yano & Kieda (1980), the integral 
equation resulting from the application of boundary conditions in (37) could be solved 
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easily by a collocation method. However, in the present work, we are concerned with 
the solution of Oseen’s equation in the context of a matched asymptotic solution in 
which Oseen’s solution is utilized only in the outer portion of the fluid domain. 

5. Application of the fundamental solutions to flow past an arbitrary 
two-dimensional body via the method of matched asymptotic expansions 

Proudman & Pearson (1957) and Kaplun (1957) devised the method of matched 
asymptotic expansions to obtain higher-order approximations to the solution for 
low-Reynolds-number flow past a sphere or a circular cylinder. In this section, we 
utilize the same singular-perturbation method in order to evaluate the higher-order 
terms in (4) and (1 1) for flows past an arbitrary two-dimensional body. Although the 
method is, in principle, capable of systematically calculating terms of any order in 
Re, the present paper will carry the approximation only up to the second term in 
(4), fl(Re) (u, p)l, which is a first correction to the Stokes’ solution. 

As discussed in $2, the zeroth-order solution for the outer region is a uniform flow, 

&(Re) = 1, (39) 

(i0, $O) = (el, 0) .  

lim f,,(Re) (uo, p o )  t-, (el, 0), 

(40) 

Thus, matching requires that the zeroth-order solution for the inner region should 
become 

(41 1 

Let us now consider how to obtain a solution of Stokes’ equation for uo andpo which 
satisfies the matching condition (41), as well as the no-slip condition on a cylindrical 
body of arbitrary cross-sectional shape. To do this, we first digress and consider the 
form of the Stokes’ velocity field that is generated, in two dimensions, by the 
translation of an arbitrary cylindrical body with unit velocity in the orthogonal 1 
and 2 directions (i.e. in the plane orthogonal to the axis of the body, with the 1 
direction coincident with the direction of uniform motion in the original problem). 
In other words, we consider the solutions of Stokes’ equation which satisfies the 

as Re+O. 
1x1 3 1 

condition 
ii, = -e,, on x E r, 

for j = 1 and 2. We shall call these velocity fields the ‘disturbance’ velocity fields 
for reasons that will soon become apparent. Since there do not exist any singularities 
except on r, the general form for can be seen from (21) to be 

The double-layer term which appears in the general solution (21) of Stoke’s equations 
is zero since 8,) is constant on r. The unknown weighting function, f’(,) (the ‘surface 
stress’) can be determined (forj  = 1 and 2) by solving (43) subject to the boundary 
condition (42), i.e. 

We shall show below that a solution of (5 )  and (6) ,  subject to the matching condition 
(41) for uo, PO, can be constructed using the disturbance-flow velocity fields, a(,) and 
a,,,. To do this i t  will be useful to have available the asymptotic form of for large 



Flow past cylinders of arbitrary cross-sectional shape 409 

r = O(Re-') for Re+O. To determine this form, we express (43) in terms of outer 

Here, f' denotes the stress, T expressed in terms of outer variables, i.e. 

1 
Ific9) = T(x) .  

It can be noted also that #= R e U j  

and in consequence 

Equation (48) indicates that the integrals along the boundary are identical whether 
the integrands are expressed in terms of inner variables or outer variables. The 
asymptotically dominant contribution to 6,) is 

Now, T,) is just the surface stress associated with the motion of an arbitrary 
two-dimensional body with unit velocity in the direction -e,, and the integral 
j 3;) n W which appears in (49) is thus the net hydrodynamic force on the body, 
resulting from the same motion. It is therefore evident that the uniform velocity that 
is generated in the far field (i.e. (49)) by uniform translation of an arbitrary 
cylindrical body is not co-linear with the direction of motion of the body except when 
the hydrodynamic lift on the body is zero. 

We now attempt to construct the solution uo of the original Stokes'-flow problem 
as a linear combination of 6(,) and ii(2) such that the matching condition (41) and 
the boundary conditions at the cylinder surface are all satisfied. It is evident, from 
the considerations of the preceding paragraph, that the matching condition (41) can 
be satisfied only, in general, by some combination of and &), with the exception 
being cases in which the symmetry of the body is such that there is no hydrodynamic 
lift. We therefore propose the form 

uo = c(el+ae2)+c(6(l)+atl(2)). (50) 

It can be seen from the condition (42) on P($) that uo satisfies the no-slip condition 
at the body surface. Furthermore, i t  is evident from the asymptotic forms (49) for 
UI(,) and 6(2) that the matching condition (41) will be satisfied to leading order for 
Re+O if 

(51) 
1 

log Re ' f o ( W  = - 

and 

Expressed in component form, the latter condition requires 

( 5 3 4  

and 
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The constant a can be determined from (53a), and (53b) then yields the required value 
for c. Both constants will generdly depend in some complicated way on the geometry 
of the body. However, it is clear that the coefficient a will be zero in any case where 
the symmetry of the problem is such that the lift on the body translating in the el 
direction is zero. 

The complete leading-order solution of the Stokes problem is thus 

C 
fo(Re) uO = - (el +a,) log Re 

The next leading-order terms in (54) for large I x I must be matched with the second 
term in the outer expansion (1 i) ,  namely the solution of Oseen’s equation (14) and 
(15). From the asymptotic expansion (11) and the form (54), it  is obvious that 

C1 

log Re ’ 
],(Re) E ~ (55) 

However, to proceed further, it is necessary to consider the asymptotic form of the 
Oseen’s solution, (37), for small p,  namely 

d 
-{dt  S i  + ( d ,  St -d, @) Si}  A] 2, n, u+ O@ logp). (56) 

Comparing (54), expressed in terms of outer variables, end the small-p form of the 
outer solution, (56), we see that the matching condition at O(l/log Re) requires 

P2 

c1 = c, (57) 

and e, = (fi,)(l)+a(fi,)(2)? forxEf+* (58) 

Finally, proceeding to the next level in the inner solution, we require that the term 
fi(Re) u, match with the leading-order mismatch betweenf,(Re) uo and the first two 
terms To(Re) fi, +],(Re) fi,, from the outer region. This mismatch is given by 

A = jo(Re) I?o +],(Re) li, -fo(Re) uo 
C 

= --{LJ [(y-log4)1]’ r l * n  dF-(e,+ae,)+O(p logp) 
logRe 4n i. 

It is clear from (59) and (53b) that the next term in the Stokes’ (inner) expansion 
should be matched with the uniform flow 

{ (y  - log 4 - c) el - cae,}. 
1 d w - -  

log Re 

Further, in view of the fact that this ‘mismatch’ uniform flow is O(logRe)-’, it is 
evident that u, will satisfy Stokes equation, the inertial term uo*Vuo in (7) being 
asymptotically negligible compared to any inverse power of log Re. 
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We have seen previously that the general solution (21) of Stokes equation with a 
boundary-stress distribution 

at the cylinder surface and a satisfying (53a), generates a uniform flow el at leading 
order in the matching region. Thus, in order to obtain a solution of Stokes equations 
which matches the el component of (60), we require a surface-stress distribution of 
the form (61) with strength 

in which a again satisfies (53a). In order to obtain a solution of Stokes' equation which 
generates a uniform flow, e, in the far field, we require a surface stress distribution 
on the cylinder surface of the form 

and /? is determined from the condition 

Jr [B(Tl:n)(l) + (Pl:n)(,)I dl- = 0- 

Thus, in order to obtain a solution of Stokes' equation which matches the e, uniform 
velocity contribution in (60)' we use the general solution (21) with a stress distribution 

(log ccz Re)z a(Bp(1, + q,,,, (66) 

and B satisfying (65). 

surface-stress distribution for the inner Stokes velocity field a t  O( ( I  /log Re),) is 
Combining the surface-stress distributions (62) and (65), we see that the total 

The complete inner (Stokes') solution through terms of O(l/log Re) is thus 

u = fo(Re) uo +fl(Re) u1 + . . . 

The hydrodynamic force on the cylinder (which includes both the drag and the lift) 
can be shown readily from the Stokes expansion (68) to be 

F = -to( Re) TO n W-fl(Re) I T' n U s 
47t 4x 41cca e +o( 1 ) (69) 

(log&), a (log Re)a * 

- - (y  -log 4 -c) el - 
-log Re '1 + (log Re)* 

14 FLY 164 
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It can be noted that the contribution to the drag force of O( l/log Re) is independent 
of the cylinder geometry, whereas the drag contribution at 0(( l/log Re)2) contains c, 
which depends on the cylinder geometry. The lift force, which is O((l/logRe)2), 
includes the two parameters c and 01, and is also dependent upon the cylinder 
geometry. 

6. Inertial effects 

flow past a circular cylinder are given by 
Proudman & Pearson (1957) showed that the first n gauge functions for uniform 

1 
fn(Re) = (log Re)n+l ’ (70) 

and it is evident that the same basic result will be true for a cylinder of any arbitrary 
cross-section. Since the Stokes’ solution has a logarithmic singularity at  infinity, the 
inner solution must always be one order higher in (l/log Re) in order to match the 
outer solution. The expansion terms a t  O((l/logRe)2) that were derived in the 
preceding section do not include the inertial effects of O(Re) which are asymptotically 
smaller than terms of O(l/(logRe)n) for any n, as Re+O. However, we can evaluate 
the leading-order inertial effects by assuming that the form of the expansion, for small 

The analysis of the preceding section has considered only the first two terms in the 
first sum in (72) and the first term in the first sum in (73). 

When (72) and (73) are substituted into (2) and (9), respectively, we can obtain 
the following equations for the leading terms. 

For the inner expansion, 

0 = - Vpog + V2uo* n ,  for all n, (74) 

0 = - Vp’l + V2u1, n ,  for n = 0 and 1, (75) 

For the outer expansion, on the other hand, 
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Thus, in order to calculate the first term in the O(Re/(log Re)n) sum in (72) ,  we need 
know only the first term in the O( (l/log Re)n+l) sum. Similarly, to calculate the first 
two terms in the O(Re/(logRe)n) sum of (73) ,  we need to know only ii0.l from the 
O( (l/log Re)n) sum. 

It is apparent that the governing equations are either homogeneous Stokes' or 
Oseen equations, or inhomogeneous versions of these equations. The framework to 
solve these equations has already been developed in the preceding sections. A solution 
for the homogeneous equations is either the general Stokes' solution (21) or the 
general Oseen's solution (37) .  A particular solution in either case can always be 
expressed in terms of the fundamental solutions (18-19) and (28-29), respectively. 
For (76) ,  the appropriate form is 

while for (78) the particular solution takes the form 

(82)  q 2  =' 4" J [iio~'(il)*V~0.1(il)l.ii*(f--r3) cw, 
a2 a 

where SZ is the flow domain. Note that ri* is a second-order tensor aa given in (32) .  
Applying the same matching procedure aa the previous section, we can calculate 
b,, ul' which represents the first direct inertial effects in the inner region. 

7. Numerical procedure and results 
In  the preceding sections, we have derived the fundamental solutions for two- 

dimensional flow satisfying, respectively, Stokes and Oseen equations, and shown how 
these may be incorporated into the method of matched asymptotic expansions to 
provide the basis for numerical, boundary-integral determinations of the effects of 
weak inertia for uniform two-dimensional flow past arbitrary cylindrical bodies. For 
the most general case, the leading-order Stokes approximation to the velocity fields, 
fo(Re) uo, which matches the uniform-flow approximation to the outer solution, is 
obtained by setting fo(Re) = l/logRe, solving the integral (44) for the particular 
cylinder geometry to obtain f o r j  = 1 and 2, and then using (53a)  and (53b) to 
obtain a and c .  The velocity uO is then given in terms of P,,, by (50). The second term, 
fl(Re) u1 = (l/logRe)2u1, in the inner region can then be evaluated by simply using 
the same fundamental stress tensors, Tu) for j = 1 , 2, to calculate /3 from (65)  and 
c2 from (64), With the velocity field given by (68) and the corresponding contributions 
to the force on the cylinder by (69). If the velocity in the outer region is desired, it  
can be evaluated directly from (l l) ,  (12) ,  (13) ,  (37) ,  (55) ,  (57) and (58) .  

The equation (44) for Tu) is solved numerically in the present study using a 
collocation method which transforms the integral equation into a linear system of 
algebraic equations. The boundary is divided into small elements so that the 
components of Tu) can be approximated by their value at the centre of each element. 
This approximation allows us to evaluate the integrals in an element by a simple 
numerical integration. When x = 1, the integrals obviously become singular. However, 
integration over a small neighbourhood of x can be achieved analytically by linear 
expansion of the integrands in (44). When the boundary is divided into N segments, 
the size of the linear matrix becomes 2N x 2N owing to the fact that there are two 
unknown variables pnz and Trial. The linear matrix can be solved straightforwardly 
by a Gaussian elimination method. 

V) 

14-2 
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It should be noted that the boundary integral method reduces the dimensionality 
of problems by one. Hence, the two-dimensional problems considered in this paper 
require only the calculation of singularity distribution along line boundaries. This 
significantly reduces the amounts of computation, compared with a general two- 
dimensional hite-element or finite-difference method. 

The total number and size of the boundary elements can be determined from the 
numerical accuracy required and the variation of the singularity strength along the 
boundaries. The numerical method is very straightforward and robust in the sense 
that even a small number of segments still provides a very reasonable answer and 
the numerical accuracy improves monotonically with the total number of segments. 

In the remainder of this section, we demonstrate the utility of the method by 
applying it to obtain solutions for streaming flow past an elliptic cylinder, a 
rectangular cylinder, and two parallel circular cylinders which may be either equal 
in diameter or of two different diameters. 

All of these problems, with the exception of two unequal cylinders, were considered 
by Yano & Kieda (1980) whose work bears some superficial resemblance to the present 
study. Yano & Kieda solved approximately for uniform flows past cylindrical bodies 
by using fundamental solutions of the Oseen equation. Oseenlet singularities were 
distributed inside the cylinder(s) and their strength and location were determined by 
a leest-squares method to satisfy approximately the no-slip boundary condition on 
the cylinder boundary. Of course, the present study is based upon a full matched 
asymptotic formulation. If we were interested in solving the Oseen equation by itself, 
however, the boundary-integral technique described in $3 could be applied more 
accurately, without the unnecessary approximations that were introduced by Yano 
& Kieda (1980). 

7.1. The elliptic cylinder 
The simplest form of an elliptic cylinder is a circular cylinder. The problem of 
streaming flow past a circular cylinder at  low Reynolds number has been analysed 
by many prior investigators (cf. Kaplun 1957 ; Proudman & Pearson 1957 ; Van Dyke 
1975). We begin here by briefly reconsidering the circular-cylinder problem in the 
present context. A major simplification is that the coefficient a can be anticipated 
a priori to have a value of zero, i.e. 

a = 0, (83) 

since there is no lift force on a circular cylinder in creeping flow. The fundamental 
stress distribution on the cylinder can be calculated easily from (44) by using a 
collocation method. In  the numerical calculation, 5-digit accuracy waa obtained from 
20 uniformly-sized segments along the circular boundary. The numerical result is 

(L)(l) = 4.00009 (84) 

(Pny)(1) = ~.oooo. (85) 

From (53b) ,  c can then be readily evaluated: 

c = 0.5000, 

and the drag force from (69) becomes 

1 (:-y+log4)+ ... 1 F, = - 
log Re 
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FIGURE 1. An inclined elliptic cylinder. 

Not surprisingly, this expression for the drag force is identical with the results of 
Proudman & Pearson (1967). 

Let us now turn to the case when the cylinder has an elliptic cross-section, and 
is inclined at an arbitrary angle relative to the streaming velocity field upstream. A 
schematic diagram is given in figure 1. The lengths of the two principal semi-axes 
are respectively 1 and b, (in effect, we have non-dimensionalized using the length of 
the major semi-axes), and the angle of inclination is denoted by 8. The inclined 
cylinder will experience a lift force as well as a drag force except when 8 = 0 and $. 
This elliptic-cylinder problem was, in fact, previously solved analytically by Shintani, 
Umemura & Takano (1983) using the method of matched asymptotic expansions and 
an elliptical cylindrical coordinate system. Comparison of our results with those of 
Shintani et al. (1983) thus provides a further basis for assessing the numerical 
accuracy and fundamental correctness of our present technique. 

Our prescription for solution, for any given 8, is to first solve (44) to obtain TC1, 
and If;,,, and then use these stress distributions to obtain the constants c and a from 
(53a) and (53b), and the second-order constants /3 and c, from (64) and (65). When 
the geometry is changed only by changing the angle of inclination, 8, relative to the 
uniform flow, without altering the cross-sectional geometry of the cylinder, however, 
one need only determine the surface-stress distribution for motion of the cylinder in 
any two orthogonal directions to determine the solution for motion with any 
arbitrary angle of inclination. In  the present case of an elliptic cylinder, it  is 
convenient to solve for motions parallel to the two principal axes of the ellipse. These 
two problems correspond to motion in the 2- and y-directions of an elliptic cylinder 
whose major principal axis lies in the 2-coordinate direction (i.e. 8 = 0). With these 
two problems solved, we can evaluate the drag forces, GI and G,, corresponding to 
creeping motion along the 2-coordinate and y-coordinate, respectively : 

Now, the force on an elliptic cylinder with arbitrary angle of inclination, 8, can be 
expressed in terms of GI and G,. In particular, if we denote the force in the j-direction 
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FIQURE 2. (pnz)(l) on the elliptic cylinder with 0 = 0. 

due to creeping motion in the i-direction as Ht,, it  follows from the linearity of the 
problem and simple geometric considerations that 

Hx, = G, cos2 8 + G, sin2 8, 

H,, = G, sin2 8+ G, cos2 8, 

Hxy = +(G2 - G,) sin 28, 

Hyx = ?j(G, - G,) sin 28. 

(90) 

(91) 

(92) 

(93) 
The fundamental stress tensor, ru) (O), corresponding to translation in the j-direction 
(i = 1 or 2) with an arbitrary, fixed inclination angle 8, is related to the Hgj according 
to 

Ht, = e, * (r,(8) * n) d r .  
r 

It follows from (53a) that a is given by 

while the coefficient c can be shown, from (53b), to be 

- 4RH,, - 
4 R  

C =  
H x x  + aHvx Hxx H,, - H2, H Y X .  

Then the drag force and lift force in (69) becomes 
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FIGURE 3. E", on the elliptic cylinder; 0, from Shintani et al. (1983); -, calculated. 

To proceed further, it is necessary to solve the integral (44) for the surface-stress 
distributions, 3;,,(8 = 0) and T(,,(B = 0) for motion in the 2- and y-directions, 
respectively. Once Tu)(O = 0) is known for j = 1 and 2, the values of G, and G, can 
be determined, whence Hi, and the contributions to the force at 0(( l/log Re)2) for an 
arbitrary angle of inclination. 

We apply a collocation method to numerically evaluate Tu, on the elliptic cylinder. 
In  figure 2, the distribution of ( TnZ)(,) is plotted for the cases of b = 1, 0.5 and 0.2. 
As the elliptic cylinder gets thinner (i.e. b becomes smaller), the stress increases 
rapidly around the edges. In  these cases we employed smaller segments around the 
edges to ensure accuracy in the numerical results. 

The contributions to the force on the cylinder a t  O((l/logRe)2), i.e. F, have been 
calculated for b = 0.2,0.5 and 1 ,  using (92) and (93). The results for the drag 1F", and 
the lift Fv are plotted in figures 3 and 4, respectively, as a function of the angle of 
inclination 8. The numerically calculated values are in excellent quantitative 
agreement with the analytical results of Shintani et al. (1983) which are also plotted 
in figures 3 and 4. For b < 1, Fx decreases as the aspect ratio b becomes smaller and 
increases as the angle of inclination 8 increases. As depicted in figure 4, the cylinder 
experiences an increased lift force Fv as the cylinder gets thinner. The lift reaches 
a maximum value at 8 = in. 

The problem of flow past an elliptic cylinder can, of course, be solved by analytical 
methods, as we have seen already, using elliptical cylindrical coordinates (Shintani 
et al. 1983). The present boundary-integral approach can be applied equally well, 
however, to problems involving more complicated geometry. For example, in the 
next section we consider the flow past a rectangular cylinder which is not accessible 
to an analytic approach with any reasonable level of effort. 

7.2. A rectangular cylinder 
A schematic diagram of the inclined rectangular cylinder is shown in figure 5. The 
problem of uniform flow past a rectangular cylinder can be analysed by a very similar 
scheme to that used in the previous case of an elliptic cylinder. Obviously the zero-order 
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FIQVRE 4. Fu on the elliptic cylinder; 0,  from Shintani et d. (1983) ; -, calculated. 

FIQURE 5. An inclined rectangular cylinder. 

hydrodynamic drag and lift forces, FO, are independent of cylinder geometry. The 
first-order solution at O((l/logRe)2) contains Ht, and thus depends on cylinder 
geometry. To evaluate C, and G,, (44) should be solved by a collocation method. Since 
the rectangular cylinder contains singular points at the four corners, the stress 
distribution around the corners was examined carefully by imposing more grid points. 
As a grid centre is closer to a corner, the calculated stress increases accordingly. 
However, the overall stress contribution to the drag or lift force converges asymp- 
totically to a finite value as the grid sizes become smaller. For this problem, we used 
80 non-uniformly sized segments along the rectangle. 

The numerically calculated values of Pz and Pg for b = 0.2,0.5 and 1 are plotted, 
respectively, in figures 6 and 7 as a function of the angle of inclination. Clearly, there 
is a very considerable similarity between the present results and those given earlier 
for a cylinder of elliptic cross-section. 
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FIQVRE 7. Pu on the rectangular cylinder. 

7.3.  Two circular cylinders 
The results and derivations in the previous sections were based on the problem of 
a uniform flow past a single cylindrical body. However, the method can also be 
extended easily to consider uniform two-dimensional flow past multiple cylindrical 
bodies. Here, we consider the problem of uniform flow paat a pair of circular cylinders 
as an illustration of the application to multiple cylindrical bodies. 

Umemura (1982) investigated uniform flow past two equal circular cylinders by use 
of bipolar coordinates. He recognized that the general solution of Stokes' equation 
in bipolar coordinates by Jeffery (1922) yields zero drag force for a cylindrical body 
in a uniform flow. Hence, in order to correct this non-physical property of the 



420 S. H .  Lee and L. G. Leal 

FIQURE 8. Two circular cylinders. 

solution, Umemura added the fundamental solution due to a point force singularity 
onto Jeffery’s solution. Unfortunately, the resulting solution became so complicated 
that Umemura (1982) arbitrarily abandoned the matching conditions for the 
particular solution from Oseen’s equation. In contrast to this bipolar-coordinate 
approach, our method can be applied to a multiple-cylinder system just as easily as 
to a single cylinder. 

The method developed in this paper does not have any intrinsic restrictions on the 
location of separate boundaries. If the distance separating the two cylinders is 
> l/Re, the general Oseen’s solution has to be applied with two cylinder boundaries 
and then matched with an inner Stokes’ solution for each cylinder considered 
separately. In the present paper, however, we considered, for simplicity, the numerical 
example in which the two cylinders are always located sufficiently close to each other 
that the Stokes’ flow region encompasses both cylinders. 

In  figure 8 we show a schematic of the two-cylinder problem. The distance between 
the cylinder centres is chosen as the characteristic lengthscale. The cylinder located 
at the origin of the coordinates is denoted as Cylinder A and the other as Cylinder B. 
The dimensionless radii of the two cylinders are rA and rB, respectively, and the 
inclination angle of the line of centres between the cylinders relative to the uniform- 
flow direction is given as 8. Note that the two cylinders touch when r,+rB = 1. 

As discussed previously, the linearity of Stokes’ equation allows us to superpose 
solutions for the two fundamental cases, 8 = 0 and 8 = !jz, to generate the flow field 
around two cylinders with an arbitrary angle of inclination, 8. 

A multiple-cylinder system can be considered as a ‘generalized’ cylindrical body 
whose surface is disconnected or discontinuous. Consequently, (69) can still be used 
to calculate the ‘total’ hydrodynamic force on the multiple-cylinder system (i.e. the 
sum of the hydrodynamic forces that act on the individual cylinders). Let us follow 
the nomenclature originally introduced for the elliptic-cylinder problem. Thus, we 
denote the total hydrodynamic forces for the fundamental creeping-flow problems 
(44) with 8 = 0 and 8 = !jn as GI and G,. The total hydrodynamic force in thej-direction 
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FIGURE 9. Stress distribution on Cylinder A;  r, = rB = 0.25. 

due to motion in the i-direction with an arbitrary angle of inclination 0, is then 
denoted as Hi, and the total hydrodynamic force corresponding to (69) is F,. The 
individual force components on either cylinder are indicated by means of the 
superscripts A and B, respectively. Thus, 

Gi = Gf+G,B, (99) 

We may note that the leading-order contribution to the total force component Fz 
is still given by -4x/(log Re)  (recall that the leading-order term is independent of 
geometry) while the total lift component Fg is still zero to leading order. Of course, 
the individual force components Fz and Fg on either cylinder A or B can vary 
depending on the geometrical location and sizes of the cylinders. For the lth 
cylindrical body, the hydrodynamical force can be expressed as 

(7- log 4 - c )  (T:. + aT,O* I )  n dT 

1 

s C F1 = - 
log -' Re s(T:*z+aT,Oiz)*n df+ (log Re)2 

((log Re)") (lo2) 
cc2 a (BT,O*z+ T,OVz)*n dT+O s - 

(log Re)a 

Note that c,  c2, a and B are still determined by the total drag and lift forces on the 
two-cylinder system. Although the zero-order lift force for the total 'composite ' 
cylindrical 'body ' is identically zero, as we have already noted, an individual cylinder 
can experience a non-zero lift force. 

7.4. Two equal cylinders 
Let us first consider uniform flow past two equal cylinders. In  this case, the two 
cylinders experience identical drag and lift forces in the low-Reynolds-number limit. 
In  figure 9 we show the stress distributions, pnz and pnv, along the cylinder surface 
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FIQIJRE 11. Pg on the two cylinders (Pg = PgA+PuB, rA = rB = 0.25); 
0 ,  from Umemura (1980) ; -, calculated. 

for the case of rA = rB = 0.25. The presence of the second cylinder creates strong 
non-uniformities in pnz and Tnz. Note that, for a single circular cylinder, a uniform 
flow produces constant values for (Pn& and (5!!ny)(l) ((T,,& = 4, (TnJCl, = 0)) along 
the cylinder surface. 

When the line of centres connecting the two cylinders is rotated through an angle 
8, the zero-order solution for total drag and lift forces is still the same as for the case 
of a single cylinder. The first-order contributions, Fz and Fy, are compared with 
Urnemura’s (1982) results in figures 10 and 11. Umemura used the Oseen’s solution 
for a single cylinder in the outer domain and arbitrarily neglected the inhomogeneous 
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FIGURE 13. Stress distribution on cylinder A ;  rA = r ,  = 0.5, 8 = Ix.  

terms in a higher-order approximation. Nevertheless, his results are still in good 
agreement with the present calculations. The figures indicate that the lift force Pv 
reaches a maximum when 6 = $, whereas the drag force F, ( x  Px (constant)+Fx) 
monotonically increases with 8. 

Since the distance between the two cylinder centres has been chosen as the 
characteristic lengthscale, the effects of the distance between the two cylinders 
on the stress can be investigated by changing the radii rA and rB. In  figure 12, the 
G, and G, are shown for various values of rA and rB. Evidently, G, and G, become 
smaller as the radii of cylinders are reduced relative to the distance between centres. 
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FIQURE 15. F", on cylinders; rA = 0.5, rB = 0.2. 

Note, when rA = rB = 0.5, the cylinders are touching. The drag force for the case of 
8 = in is always higher than for 8 = 0 (i.e. G, > Gl). 

When the two cylinders are very close to each other or in contact, Moffat's eddies 
can exist near the corner (Moffat 1964). Figure 13 shows the stress (pnz)(!) and 
for rA = rB = 0.5 and 6 = in. It indicates the presence of flow separation in the corner, 
corresponding to the existence of weakly negative values for (5?nz)(1) and near 
the contact points. Dorrepaal& O'Neil(i979) found several eddies around the contact 
point. However, since there exists a strong damping effect and the ratio of the 
intensities of successive eddies is greater than 300, any experimental observation of 
a sequence of eddies will be extremely difficult (Moffat 1964). 

Since the eddy intensity is very weak, a direct application of a collocation method 
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FIGURE 16. Eoy on two cylinders; rA = 0.5, r, = 0.2. 

is likely to fail to identify the multiple Moffat eddies. Smaller grids around the contact 
point will make the matrix from a collocation method singular. Nevertheless, since 
the weak eddies do not affect the overall flow field, it  is clear that they could be 
examined separately with a more elaborate numerical scheme. For present purposes, 
it is probably superfluous to evaluate the very weak multiple eddies, which will not 
contribute significantly to the overall flow field or to the drag and lift forces, even 
though the esoteric multiple eddies are of great mathematical interest. 

7.5.  Two unequal cylinders 
Finally, we consider the case of uniform flow past two unequal cylinders. The flow 
in this case generates non-zero lift forces on the individual cylinders, even in the 
zero-order solution, and this case deserves to be examined more carefully. In  the 
present numerical example, we fix the radius of the first cylinder at  rA = 0.5 and vary 
the radius of the second cylinder between 0 and 0.5. 

The dependence of G, and G, on rB is plotted in figure 14. We examine the case 
of rA = 0.5 and rB = 0.2 more thoroughly to illuminate the problem of non-equal 
cylinders. 

In  figures 15 and 16, we plot Pz and Pu for the individual cylinders us. the angle 
of inclination. Although the two cylinders experience unequal drag and lift forces in 
the zero-order solution, the total drag force always remains constant, equal to 
- 4lt/log Re, independent of the body geometry. Similarly, the overall lift force from 
the zero-order solution is zero, though the unequal-sized cylinders experience a 
non-zero lift force individually. We also plot Fz and Fu from the first-order solution 
in figures 17 and 18, whieh shows the uneven distribution of drag and lift forces 
between the two cylinders, aa a consequence of their differences in size. It is 
interesting to note that the leading-order contribution to the lift forces Po$ A and Po$ 
is in the direction to push the cylinders apart. However, the first-order contributions 
Po$ A and are in the opposite direction, and this reduces the zero-order tendency 
to push the cylinders apart. 
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FIGURE 18. Fg on two cylinders; r, = 0.5, rB = 0.2. 

8. Conclusions 
A numerical method has been developed to calculate low-Reynolds-number flow 

past an arbitrary cylinder. The solutions for both the inner and outer fields are 
expressed in terms of integral equations of the second kind. These integral equations 
are then solved numerically by a collocation method, which takes account of the 
matching conditions between the outer and inner solutions. 

The general solution of Stokes' equation for two-dimensional flow exhibits a 
logarithmic eingularity at infinity, which signals the fact that the Stokes' approxim- 
ation is not valid except within a distance less than O ( l / R e )  from the cylinder. Kaplun 
(1957) and Proudman & Pearson (1957) devised a singular-perturbation method which 
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asymptotically matches the inner Stokes’ solution with a solution of the Oseen 
equation which is valid in the outer region. In  the same spirit, we propose a numerical 
method of implementing singular-perturbation theory, which can be applied easily 
for a uniform flow past one (or more) arbitrary cylinders. 

For numerical examples, we consider uniform flow past an elliptic cylinder, uniform 
flow past a rectangular cylinder, and uniform flow past a pair of circular cylinders. 
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